skip to main content


Search for: All records

Creators/Authors contains: "Cupani, Guido"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The first stars were born from chemically pristine gas. They were likely massive, and thus they rapidly exploded as supernovae, enriching the surrounding gas with the first heavy elements. In the Local Group, the chemical signatures of the first stellar population were identified among low-mass, long-lived, very metal-poor ([Fe/H] < −2) stars, characterized by high abundances of carbon over iron ([C/Fe] > +0.7): the so-called carbon-enhanced metal-poor stars. Conversely, a similar carbon excess caused by first-star pollution was not found in dense neutral gas traced by absorption systems at different cosmic time. Here we present the detection of 14 very metal-poor, optically thick absorbers at redshift z ∼ 3–4. Among these, 3 are carbon-enhanced and reveal an overabundance with respect to Fe of all the analyzed chemical elements (O, Mg, Al, and Si). Their relative abundances show a distribution with respect to [Fe/H] that is in very good agreement with those observed in nearby very metal-poor stars. All the tests we performed support the idea that these C-rich absorbers preserve the chemical yields of the first stars. Our new findings suggest that the first-star signatures can survive in optically thick but relatively diffuse absorbers, which are not sufficiently dense to sustain star formation and hence are not dominated by the chemical products of normal stars. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024
  2. Abstract Luminous quasars are powerful targets to investigate the role of feedback from supermassive black holes (BHs) in regulating the growth phases of BHs themselves and of their host galaxies, up to the highest redshifts. Here we investigate the cosmic evolution of the occurrence and kinematics of BH-driven outflows, as traced by broad absorption line (BAL) features, due to the C iv ionic transition. We exploit a sample of 1935 quasars at z = 2.1–6.6 with bolometric luminosity log( L bol /erg s −1 ) ≳ 46.5, drawn from the Sloan Digital Sky Survey and from the X-Shooter legacy survey of Quasars at the Reionization Epoch (XQR-30). We consider rest-frame optical bright quasars to minimize observational biases due to quasar selection criteria. We apply a homogeneous BAL-identification analysis, based on employing composite template spectra to estimate the quasar intrinsic emission. We find a BAL quasar fraction close to 20% at z ∼ 2–4, while it increases to almost 50% at z ∼ 6. The velocity and width of the BAL features also increase at z ≳ 4.5. We exclude the possibility that the redshift evolution of the BAL properties is due to differences in terms of quasar luminosity and accretion rate. These results suggest significant BH feedback occurring in the 1 Gyr old universe, likely affecting the growth of BHs and, possibly, of their host galaxies, as supported by models of early BH and galaxy evolution. 
    more » « less
    Free, publicly-accessible full text available July 1, 2024
  3. ABSTRACT

    The QUBRICS (QUasars as BRIght beacons for Cosmology in the Southern hemisphere) survey aims at constructing a sample of the brightest quasars with $z \lower.5ex\hbox{$\,\, \buildrel\gt \over \sim \,\,$}2.5$, observable with facilities in the Southern Hemisphere. QUBRICS makes use of the available optical and IR wide-field surveys in the South and of Machine Learning techniques to produce thousands of bright quasar candidates of which only a few hundred have been confirmed with follow-up spectroscopy. Taking advantage of the recent Gaia Data Release 3, which contains 220 million low-resolution spectra, and of a newly developed spectral energy distribution fitting technique, designed to combine the photometric information with the Gaia spectroscopy, it has been possible to measure 1672 new secure redshifts of QUBRICS candidates, with a typical uncertainty of σz = 0.02. This significant progress of QUBRICS brings it closer to (one of) its primary goals: providing a sample of bright quasars at redshift 2.5 < z < 5 to perform the Sandage test of the cosmological redshift drift. A Golden Sample of seven quasars is presented that makes it possible to carry out this experiment in about 1500 h of observation in 25 yr, using the ANDES spectrograph at the 39m ELT, a significant improvement with respect to previous estimates.

     
    more » « less
  4. ABSTRACT

    Several recent works have focused on the search for bright, high-z quasars (QSOs) in the South. Among them, the QUasars as BRIght beacons for Cosmology in the Southern hemisphere (QUBRICS) survey has now delivered hundreds of new spectroscopically confirmed QSOs selected by means of machine learning algorithms. Building upon the results obtained by introducing the probabilistic random forest (PRF) for the QUBRICS selection, we explore in this work the feasibility of training the algorithm on synthetic data to improve the completeness in the higher redshift bins. We also compare the performances of the algorithm if colours are used as primary features instead of magnitudes. We generate synthetic data based on a composite QSO spectral energy distribution. We first train the PRF to identify QSOs among stars and galaxies, then separate high-z quasar from low-z contaminants. We apply the algorithm on an updated data set, based on SkyMapper DR3, combined with Gaia eDR3, 2MASS, and WISE magnitudes. We find that employing colours as features slightly improves the results with respect to the algorithm trained on magnitude data. Adding synthetic data to the training set provides significantly better results with respect to the PRF trained only on spectroscopically confirmed QSOs. We estimate, on a testing data set, a completeness of $\sim 86{{\ \rm per\ cent}}$ and a contamination of $\sim 36{{\ \rm per\ cent}}$. Finally, 206 PRF-selected candidates were observed: 149/206 turned out to be genuine QSOs with z > 2.5, 41 with z < 2.5, 3 galaxies and 13 stars. The result confirms the ability of the PRF to select high-z quasars in large data sets.

     
    more » « less
  5. null (Ed.)
    ABSTRACT We present the measured gas-phase metal column densities in 155 sub-damped Ly α systems (subDLAs) with the aim to investigate the contribution of subDLAs to the chemical evolution of the Universe. The sample was identified within the absorber-blind XQ-100 quasar spectroscopic survey over the redshift range 2.4 ≤ zabs ≤ 4.3. Using all available column densities of the ionic species investigated (mainly C iv, Si ii, Mg ii, Si iv, Al ii, Fe ii, C ii, and O i; in order of decreasing detection frequency), we estimate the ionization-corrected gas-phase metallicity of each system using Markov chain Monte Carlo techniques to explore a large grid of cloudy ionization models. Without accounting for ionization and dust depletion effects, we find that the H i-weighted gas-phase metallicity evolution of subDLAs is consistent with damped Ly α systems (DLAs). When ionization corrections are included, subDLAs are systematically more metal poor than DLAs (between ≈0.5σ and ≈3σ significance) by up to ≈1.0 dex over the redshift range 3 ≤ zabs ≤ 4.3. The correlation of gas phase [Si/Fe] with metallicity in subDLAs appears to be consistent with that of DLAs, suggesting that the two classes of absorbers have a similar relative dust depletion pattern. As previously seen for Lyman limit systems, the gas phase [C/O] in subDLAs remains constantly solar for all metallicities indicating that both subDLAs and Lyman limit systems could trace carbon-rich ejecta, potentially in circumgalactic environments. 
    more » « less
  6. ABSTRACT

    The elemental abundances in the broad-line regions of high-redshift quasars trace the chemical evolution in the nuclear regions of massive galaxies in the early Universe. In this work, we study metallicity-sensitive broad emission-line flux ratios in rest-frame UV spectra of 25 high-redshift (5.8 < z < 7.5) quasars observed with the VLT/X-shooter and Gemini/GNIRS instruments, ranging over $\log \left({{M}_{\rm {BH}}/\rm {M}_{\odot }}\right) = 8.4-9.8$ in black hole mass and $\log \left(\rm {L}_{\rm {bol}}/\rm {erg \, s}^{-1}\right) = 46.7-47.7$ in bolometric luminosity. We fit individual spectra and composites generated by binning across quasar properties: bolometric luminosity, black hole mass, and blueshift of the C iv line, finding no redshift evolution in the emission-line ratios by comparing our high-redshift quasars to lower redshift (2.0 < z < 5.0) results presented in the literature. Using cloudy-based locally optimally emitting cloud photoionization model relations between metallicity and emission-line flux ratios, we find the observable properties of the broad emission lines to be consistent with emission from gas clouds with metallicity that are at least 2–4 times solar. Our high-redshift measurements also confirm that the blueshift of the C iv emission line is correlated with its equivalent width, which influences line ratios normalized against C iv. When accounting for the C iv blueshift, we find that the rest-frame UV emission-line flux ratios do not correlate appreciably with the black hole mass or bolometric luminosity.

     
    more » « less
  7. Abstract Sub-damped Lyman α systems (subDLAs; H i column densities of 19.0 ≤ logN(H i) < 20.3) are rarely included in the cosmic H i census performed at redshifts zabs ≳ 1.5, yet are expected to contribute significantly to the overall H i mass budget of the Universe. In this paper, we present a blindly selected sample of 155 subDLAs found along 100 quasar sightlines (with a redshift path-length ΔX = 475) in the XQ-100 legacy survey to investigate the contribution of subDLAs to the H i mass density of the Universe. The impact of X-Shooter’s spectral resolution on Ly α absorber identification is evaluated, and found to be sufficient for reliably finding absorbers down to a column density of logN(H i) ≥ 18.9. We compared the implications of searching for subDLAs solely using H i absorption versus the use of metal lines to confirm the identification, and found that metal-selection techniques would have missed 75 subDLAs. Using a bootstrap Monte Carlo simulation, we computed the column density distribution function (f(N, X)) and the cosmological H i mass density ($\Omega _{\rm H\,{\small I}}$) of subDLAs and compared with our previous work based on the XQ-100 damped Lyman α systems. We do not find any significant redshift evolution in f(N, X) or $\Omega _{\rm H\,{\small I}}$ for subDLAs. However, subDLAs contribute 10–20 per cent of the total $\Omega _{\rm H\,{\small I}}$ measured at redshifts 2 < z < 5, and thus have a small but significant contribution to the H i budget of the Universe. 
    more » « less